
The Dark Reality
of Open Source

S P O T L I G H T

Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

Page 1 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

Open source software (OSS) has quickly transformed both
how modern applications are built and the underlying code
they rely on. Access to high-quality and powerful open
source software projects has allowed developers to quickly
integrate new capabilities into their applications without
having to reinvent the wheel. As a result, it is now estimated
that between 80% and 90% of the code in most modern
applications is made up of open source components.
Likewise, many of the very tools that have enabled the
growth of DevOps and CI/CD such as Jenkins, Kubernetes,
and Docker are themselves open source projects.

OSS also allows organizations to reduce their software
costs, and is often key to digital transformation efforts
and the transition of services to the cloud. It is no
surprise then that a 2020 report from Red Hat found that
95% of organizations view open source software as
strategically important to their business.

However the open source revolution also comes with its
own potential pitfalls. Open source code is often considered
to be more secure than private code, as OSS can be
reviewed by many more people to find problems. However,
some weaknesses will always make it through the review
process, and when countless developers reuse the same
code, any vulnerabilities in that code can likewise be
replicated. In short, while open source projects can rapidly
go viral, so can their vulnerabilities. As a result, the same
Red Hat report also found that the security of the code was
the #1 barrier to adopting open source in the enterprise.

The now infamous Heartbleed bug demonstrated how a
relatively simple vulnerability in the OpenSSL library, could
reach around the globe and put roughly 17.5% of the
world’s SSL-enabled sites at risk. And while Heartbleed
showed the breadth of open source weaknesses, the
Equifax breach showed the severity, when a vulnerability
in the open source Apache Struts framework led to one of
the biggest data breaches in U.S. history.

And while Heartbleed and the Apache Struts
vulnerabilities are the household names of open source
vulnerabilities, they are far from the only examples. Open
source software is increasingly being targeted by
cryptominers, ransomware, and leveraged in DDoS
attacks. Unfortunately, OSS vulnerabilities are often a
blind spot for many enterprises, who may not always be
aware of all the open source projects and dependencies
that are used in their applications.

With this in mind, we have focused this version of the
RiskSense Spotlight report on vulnerabilities in some of
today’s most popular open source software, including
more than 50 OSS projects and over 2,600 vulnerabilities.
We then used this dataset to provide a risk-based
analysis of open source software to reveal the following:

• Which vulnerabilities pose the most risk based on
their susceptibility to real-world attack

• Which open source projects have the most
vulnerabilities and risk

• What are the most significant vulnerabilities for
individual open source projects

• How open source vulnerabilities are growing
year over year

• Gaps and lags in how OSS vulnerabilities are added
to the U.S. National Vulnerability Database

• What underlying weaknesses caused the
vulnerability and how attackers could use them

• How the vulnerabilities were scored and categorized
by CVSS and other models

Executive Summary

https://www.sonatype.com/hubfs/SSC/Software_Supply_Chain_Inforgraphic.pdf
https://www.redhat.com/en/enterprise-open-source-report/2020
https://www.redhat.com/en/enterprise-open-source-report/2020
https://www.redhat.com/en/enterprise-open-source-report/2020
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://en.wikipedia.org/wiki/2017_Equifax_data_breach

Page 2 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

2019 was a Record Year for OSS Vulnerabilities
In 2019 the overall number of published open source CVEs
(968) more than doubled compared to any previous year.
Vulnerabilities grew by 130% between 2018 and 2019 (421
CVEs to 968 CVEs), and was 127% higher than 2017 (435),
which had the second most CVEs in the study. This
increase does not appear to be a flash in the pan as the
discovery of new CVEs also remains at historically high
levels through the first three months of 2020. This volume
increases the complexity of managing an organization’s
attack surface for developers, IT, and security teams alike.

Widespread Problems in NVD Disclosure Latency
Vulnerabilities in open source software are taking a very
long time to be added to the U.S. National Vulnerability
Database (NVD). The average time between the first
public disclosure of a vulnerability and its addition to the
NVD was 54 days. The longest observed lag was 1,817
days for a critical PostgreSQL vulnerability. 119 CVEs had
lags of more than 1 year, and almost a quarter (24%) had
lags of more than a month. These lags were consistent
across all severities of vulnerabilities, with critical
severity vulnerabilities having some of the longest
average lag times. This latency creates a dangerous lack
of visibility for organizations who rely on the NVD as their
main source of CVE data and context information.

Jenkins & MySQL Generate the Most Vulnerabilities
The Jenkins automation server had the most CVEs overall
with 646 and was closely followed by MySQL with 624.
These projects likewise tied for the most weaponized

vulnerabilities with 15 (vulnerabilities for which exploit
code exists). By contrast, HashiCorp’s Vagrant only had 9
total CVEs, but 6 of them were weaponized, making it one
of the most weaponized open source projects in terms of
percentage. Apache Tomcat, Magento, Kubernetes,
Elasticsearch, and JBoss all had vulnerabilities that were
trending or popular in real-world attacks.

Cross-Site Scripting & Input Validation
are the Most Weaponized Weaknesses
Cross-Site Scripting (XSS) and Input Validation
weaknesses were both some of the most common and
most weaponized types of weaknesses in the study. XSS
issues were the second most common type of weakness,
but were the number one most weaponized. Likewise
Input Validation issues were the third most common and
second most weaponized. Input Validation and Access
Control issues were both common and were seen
trending in real-world attacks.

Rare Weaknesses Matter in the Real World
Some weaknesses were far less common, yet remained
very popular in active attack campaigns. Deserialization
Issue (28 CVEs), Code Injection (16 CVEs), Error Handling
Issues (2 CVEs), and Container Errors (1 CVE) were all
seen trending in the wild. The fact that these issues are
rare in open source projects is a positive sign for the
security of open source code, but also serve as a
reminder that when problems do pop in OSS, they can be
attacked quite broadly.

Key Findings

Page 3 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

Executive Summary

Key Findings

1. Overview of Vulnerabilities

 Increased Risk Funnel Analysis

 CVEs by Severity

2. Vulnerabilities by Year

3. Vulnerabilities by Open Source Project

 Summary of Key Projects and Vulnerabilities

4. NVD Latency Analysis

 NVD Lag Times by Open Source Project

 Lag Examples

5. Vulnerabilities by Weakness

 Weaknesses by OWASP Top 10

Conclusion

1

2

4

4

5

6

7

9

10

12

13

15

17

18

Table of Contents

Page 4 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

Open source software has existed for decades reaching
back to the earliest days of the GNU Project and the
subsequent release of Linux. And while Linux has
become one of the most widely used operating systems
today, it was historically one of the few success stories of
open source. However, over the past several years, OSS
has experienced somewhat of a revolution with much of
the most popular software being based on open source.

We focused our analysis on some of the most popular
open source projects from the past five years. We used a
variety of factors to build the list including popularity on
GitHub, market value of companies based on specific
open source projects (e.g., Elastic and Elasticsearch), as
well as various OSS software lists such as the BOSS index.
In total, the resulting dataset included 54 open source
projects. We analyzed each project over the past five years
from 2015 through the first three months of 2020, which
yielded a total of 2,694 CVEs.

Of note, we intentionally excluded Linux and its many
offshoots. While Linux vulnerabilities are obviously
significant, they have been well documented in other
analysis, and our goal was to focus on more recent, smaller
projects. We also excluded open source web frameworks
such as Drupal and WordPress, which we analyzed in the
recent Spotlight report, “Cracks in the Foundation: Web and
Application Framework Vulnerabilities."

Increased Risk Funnel Analysis
While all vulnerabilities matter, those used by attackers in
the real world naturally pose a much more immediate risk
to an organization. To this end, we analyzed the dataset in
terms of a variety of real-world threat contexts. This type of
threat-centric analysis provides a powerful way to quickly
hone in on the most important vulnerabilities for
remediation. The analysis yielded a progressively focused
funnel of vulnerabilities based on the following contexts:

• Weaponized vulnerabilities: Of the 2,694 total
vulnerabilities, only 89 or 3.3% of them are weaponized,
meaning that known exploit code exists that can take
advantage of the vulnerability.

• Strategic Vulnerabilities: 18 vulnerabilities were found
to enable remote code execution (RCE) or privilege
escalation (PE). Such vulnerabilities are highly valuable
to attackers and increase the likelihood and impact of
an attack.

• Trending in the Wild: 6 vulnerabilities were noted by
RiskSense research to be Trending based on their being
targeted in active attack campaigns or having the
potential for widespread impact.

1. Overview of Vulnerabilities

Actionable Funnel for Vulnerabilities

2,694
89

18
Vulnerabilities

RCE/PEWeaponized CVE

Total CVE Count

CVEs That Matter

6

Start Here

Trending

Figure 1(a): Vulnerability Funnel

https://www.battery.com/powered/boss-index-tracking-explosive-growth-open-source-software/
https://info.risksense.com/spotlight_webappframeworks
https://info.risksense.com/spotlight_webappframeworks

Page 5 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

1. Overview of Vulnerabilities (Continued)

CVEs by Severity
We also analyzed the data set in terms of CVSS v2, CVSS
v3, and RiskSense’s Vulnerability Risk Rating (VRR). It
should be noted that not all CVEs had a CVSS v3 score as
that scoring model was not introduced until later in 2015.
As a result the CVSS analysis only contains 2,474 CVEs as
opposed to 2,694.

Figure 1(b) shows that the majority of CVEs were rated as
Medium in the CVSS v2 scoring model. In all, 11.9% CVEs
were High, 71.1% were rated Medium, and 17% were Low.
CVSS v3 introduces the “Critical” severity rating along with
a more sophisticated scoring model. In terms of the OSS
dataset, this translated to 9.6% classified as Critical CVEs,
33.3% as High, 54.5% as Medium, and 2.6% Low.

Figure 1(b): Comparison of CVE Severity Classification Models

457Low 9 0 0

1917Medium 46 8 2

320High 34 10 4

CVEs Weaponized RCE/PE TrendingRating

Total 2,694 89 18 6

64Low 0 0 0

1349Medium 15 0 0

824High 39 10 2

CVEs Weaponized RCE/PE TrendingRating

Total 2474 70 14 5

237Critical 16 4 3

426 5 0 0

2207 23 0 0

43 43 5 3

Weaponized RCE/PE Trending

2,694 89 18 6

18 18 13 3

CVSS v3

CVSS v2

RiskSense VRR

CVEs

Low

Medium

High

Total

Critical

Rating

Page 6 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

Based on the sheer volume of CVEs, 2019 was a
watershed year for open source vulnerabilities. While the
total number of CVEs has been steadily rising in recent
years, 2019 more than doubled the previous high-water
mark set in 2017. 2019 showed a 130% increase
compared to 2018, rising from 421 CVEs to 968. This rate
was far higher than the overall NVD, which grew at a rate
of only 8% in the same time frame.

Through the first three months of 2020, the rate of CVEs
discovery remains historically high with a total of 178
CVEs. While this puts 2020 on a slower pace than 2019, it
is well above all other years.

The increase in vulnerabilities was seen across a variety
of projects, although Magento, GitLab, and Jenkins
showed the most pronounced increases. Magento, an
open source e-commerce platform, had no vulnerabilities
in 2018 but had 137 in 2019. GitLab vulnerabilities rose
by almost 400% between 2018 and 2019, jumping from
40 to 198 CVEs, while Jenkins rose by 174%, from 120 to
329 CVEs. Conversely, Hive, Puppet, and OpenShift
showed decreases in CVEs from 2018 to 2019.

As a point of good news, the weaponization of
vulnerabilities in 2019 remains low. Of the 978
vulnerabilities in 2019, only 15 or 1.5% were weaponized.
This is notably lower than the average NVD weaponization
rate for 2019, which was 4.1%.

1. Overview of Vulnerabilities (Continued)

A Note About RiskSense VRR: The RiskSense VRR
has inherent advantages over CVSS in that it takes
into account a variety of more advanced vulnerability
analytics as well as real-world contexts such as the
popularity of a vulnerability in attack campaigns or
hacker forums. However, the OSS data demonstrates
the value of this approach in terms of efficiency. The
VRR model produced only 18 Critical CVEs and 43
High severity CVEs. However, these combined 61
CVEs (2.3%) accounted for all of the RCE/PE capable
and trending vulnerabilities in the dataset.

This means Security or IT teams could address the
highest risk vulnerabilities by addressing only 2.3%
of the CVEs in the dataset.

By contrast, teams would need patch 2,237 (83%) of
the CVEs to achieve the same efficacy using CVSS
v2 or 1,098 (42.9%) using CVSS v3. It is also
important to note that CVSS v3 scores did not cover
all RCE/PE and trending vulnerabilities simply due to
not being applied to all CVEs in 2015.

2. Vulnerabilities by Year

0

200

400

600

800

1000

2015 2016 2017 2018 2019 2020*

Year Total CVEs Weaponized

Figure 2(a): Open Source CVEs by Year
*2020 data only includes January through March

89

5

15

9

18

23

19

2694

179

968

421

435

388

3032015

2016

2017

2018

2019

Total
2020*

Count of Weaponized Count of Not Weaponized

Page 7 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

3. Vulnerabilities by Open Source Project

Next we analyzed the vulnerabilities in terms of the open
source project that they were associated with. It should
be noted that some vulnerabilities applied to more than
one project.

It is important to note that simply having a large number
of vulnerabilities should not necessarily be a negative
mark against a particular OSS project. For example,
Jenkins, which had the most vulnerabilities of any OSS
project, is also a CVE Numbering Authority (CNA) and has
a robust process for the collection and submission of
CVEs. As a result, such projects may be more efficient at
discovering and reporting vulnerabilities than others. This
makes it important to track additional real-world contexts
such as vulnerabilities that are weaponized or popular
(trending) in the wild.

Figure 3(a) shows the top 30 OSS projects both in terms of
total CVEs as well as weaponized CVEs. The list is sorted
in terms of decreasing number of weaponized CVEs.

The top projects in terms of total vulnerabilities were
Jenkins, MySQL, GitLab, OpenStack, and Magento. The total
CVEs for these projects are shown below in Figure 3(b).

Product Total CVEs Weaponized

Jenkins

MySQL

OpenStack

Tomcat

Hive

Vagrant

Elasticsearch

Ansible

Magento

Alfresco

GitLab

OpenShift

PostgreSQL

Docker

Redis

Chef

Kubernetes

Nginx

Spark

LifeRay Portal

Odoo

Kaltura

SVN

Artifactory

Puppet

Cloud Foundry

Kibana

MongoDB

JBoss

Hbase

646

624

165

72

90

9

58

32

154

9

306

76

47

30

16

10

44

22

16

10

10

5

5

4

72

42

29

18

88

12

15

15

7

7

6

6

4

4

3

3

2

2

2

2

2

2

1

1

1

1

1

1

1

1

0

0

0

0

8

0

Figure 3(b): Top 5 Projects by Total CVEs

Figure 3(a): CVEs by Project, Highest to Lowest Weaponized

Jenkins
646 CVEs

MySQL
624 CVEs

GitLab
306 CVEs

OpenStack
165 CVEs

Magento
154 CVEs

https://www.jenkins.io/security/

RiskSense Spotlight Report • May 2020

Page 8 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

3. Vulnerabilities by Open Source Project (Continued)

Figure 3(c): Projects by Percent of Weaponized CVEs

However, large numbers of CVEs don’t necessarily translate to equally large amounts of weaponized vulnerabilities. While
Jenkins and MySQL were tied with the most weaponized CVEs with 15, their overall weaponization rate remains relatively
low at around 2.3% and 2.4% respectively. In strong contrast, HashiCorp’s Vagrant only had 9 CVEs, yet 6 of them (66.7%)
were weaponized. While this is admittedly a very small sample size, it is worth noting and monitoring going forward, as
organizations should be aware of their software that is the most likely to be weaponized. Figure 3(c) provides a list of
projects in terms of their weaponization rates. Many examples, such as Artifactory, have a very low number of CVEs
overall (4), which contribute to their high weaponization rates.

Product Weaponized % Weaponized

Vagrant

Alfresco

Chef

Kaltura

SVN

Ansible

Redis

LifeRay Portal

Odoo

Tomcat

JBoss

Elasticsearch

Hive

Docker

Artifactory

6

3

2

1

1

4

2

1

1

7

8

4

6

2

1

66.7%

33.3%

20%

20%

20%

12.5%

12.5%

10%

10%

9.7%

9.1%

6.9%

6.7%

6.7%

25%

Total CVEs

9

9

10

5

5

32

16

10

10

72

88

68

90

30

4

However, Apache Tomcat, JBoss,
Elasticsearch, and Hive all have
comparatively large numbers of
CVEs and have weaponization
rates significantly higher than
the average of the dataset,
which is 3.4%.

In contrast, several open source
projects and very low or
non-existent weaponization rates.
GitLab had the 3rd most total CVEs,
yet only two were weaponized.
Puppet and Cloud Foundry had 72
and 43 CVEs respectively, yet had
no weaponization.

Organizations should be aware of software

most likely to be weaponized

RiskSense Spotlight Report • May 2020

Page 9 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

3. Vulnerabilities by Open Source Project (Continued)

Summary of Key Projects and Vulnerabilities
The following section highlights 12 important
vulnerabilities that organizations should be aware of in their
risk management practices. These include vulnerabilities
that are trending in active threat campaigns and/or pose a
high risk due to their exploitability and potential impact.

• Jenkins: Jenkins is an automation server which enables
developers to build, test, and deploy software. As
described above, Jenkins shows the most total CVEs
and the third most weaponized CVEs. While not
currently being exploited in the wild, the recently
discovered CVE-2020-2100 is particularly significant in
that it can be used in reflective DDoS attacks.

• JBoss: JBoss is an open source application platform.
JBoss had the 8th most CVEs with 88, and the 6th most
weaponized CVEs with 8. JBoss is susceptible to the
recent Ghostcat vulnerability (CVE-2020-1938), which
primarily affects Apache Tomcat and is currently trending
in the wild. Other notable JBoss vulnerabilities include
CVE-2017-12149, a deserialization vulnerability that has
been attacked in the wild, as well as the older
CVE-2010-0738 which continues to be targeted by
ransomware. Refer to our previous Spotlight report,
“Enterprise Ransomware – Through the Lens of Threat and
Vulnerability Management” for more analysis on JBoss
and other vulnerabilities that are targeted by ransomware.

• Apache Tomcat: Apache Tomcat had the 10th most
CVEs and was the 7th most weaponized. The most
notable vulnerability was the aforementioned Ghostcat
vulnerability (CVE-2020-1938), which allows attackers to
plant backdoors on Tomcat servers. Other notable
vulnerabilities include CVE-2019-0232 and
CVE-2017-12617, which enable remote code execution
and are rated as Critical by RiskSense’s Vulnerability
Risk Rating.

• Magento: Magento is a popular open source
I�commerce platform. While only 3 out of Magento’s�
154 vulnerabilities were weaponized, they were all�
significant. CVE-2019-7932 enables injection of�
arbitrary code and is currently trending in the wild.�
Additionally CVE-2019-7139 enables SQL injection and�
has likewise been previously attacked in the wild.�
Likewise CVE-2016-4010 has been used in “magecart”�
attacks as a way to skim credit card information from�
Magento-based sites.

• Docker: Docker accounted for 30 CVEs and only had�
two that were weaponized. However, this included�
CVE-2019-5736, which can allow a malicious Docker�
container to gain root-level control over the host by�
attacking the host’s runC binary. This same vulnerability�
also affects Kubernetes and OpenShift. Additionally,�
improperly secured Docker deployments have been�
found to be attacked by a worm known as “Graboid.”

• Kubernetes: In addition to being affected by the runC�
vulnerability described above (CVE-2019-5736),�
Kubernetes was also affected by CVE-2018-1002105.�
This vulnerability is also trending in the wild and allows�
an attacker to send fully authorized requests to a�
Kubernetes API server with the privileges of any user.

• Elasticsearch: Elasticsearch had the 12th most total�
vulnerabilities with 58 CVEs. Four vulnerabilities were�
weaponized with two enabling remote code execution.�
Notably, CVE-2015-1427 has been used in a variety of�
attacks over the past year including cryptomining,�
botnet, and DDoS campaigns.

• Git: Git came up very little in our dataset with only two�
CVEs, but that doesn’t mean that it hasn’t been the�
target of attacks. Instead of going after CVEs, attackers�
have targeted weakly secured GitHub, GitLab, and�
BitBucket accounts to gain access and hold Git�
repositories for ransom.

https://nvd.nist.gov/vuln/detail/CVE-2020-2100
https://www.securityweek.com/hackers-scanning-apache-tomcat-servers-vulnerable-ghostcat-attacks
https://nvd.nist.gov/vuln/detail/CVE-2020-1938
https://nvd.nist.gov/vuln/detail/CVE-2017-12149
https://nvd.nist.gov/vuln/detail/CVE-2010-0738
https://risksense.com/wp-content/uploads/2019/09/RiskSense-Spotlight-Report-Ransomware.pdf
https://risksense.com/wp-content/uploads/2019/09/RiskSense-Spotlight-Report-Ransomware.pdf
https://nvd.nist.gov/vuln/detail/CVE-2020-1938
https://nvd.nist.gov/vuln/detail/CVE-2019-0232
https://nvd.nist.gov/vuln/detail/CVE-2017-12617
https://nvd.nist.gov/vuln/detail/CVE-2019-7932
https://nvd.nist.gov/vuln/detail/CVE-2019-7139
https://nvd.nist.gov/vuln/detail/CVE-2016-4010
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2018-1002105
https://nvd.nist.gov/vuln/detail/CVE-2015-1427
https://www.getastra.com/blog/911/git-repositories-hacked/

RiskSense Spotlight Report • May 2020

Page 10 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

4. NVD Latency Analysis

The U.S. National Vulnerability Database (NVD) is a
critical resource of vulnerability information, and for
many organizations is the primary way of consuming CVE
information. The NVD ingests CVE entries from MITRE,
vendors, and trusted security researchers and enhances
each CVE entry with a variety of information including
severity scores, weakness information and a variety of
additional contexts. However, not all CVEs disclosed by
vendors get into the NVD in a timely manner leading to
CVE disclosure latency with respect to the NVD release
date. This lag can cause serious problems for
organizations that rely solely on the NVD for their
vulnerability information.

Unfortunately, the NVD lag observed in the OSS
dataset was exceptionally high, with the average lag
being 54 days.

This should be a concerning finding for organizations that
rely on the NVD as their primary source of CVE data. It is
not unusual to see some amount of lag between a CVE

first being published and being added to the NVD as the
NVD will validate and enrich a CVE with a variety of
information. However, many CVEs are added to the NVD
on the same day they are published, and for most popular
software, lags are typically no more than 1 to 2 days.

Digging deeper into the data, it became clear that lags were
both fairly common and could be particularly long. The
longest observed lag was 1,817 days. This was tied to a
PostgreSQL vulnerability (CVE-2015-0244), which enabled
SQL injection and is a CVSS v3 Critical vulnerability with a
score of 9.8. The vulnerability was originally published on
2/6/15 and was not added to the NVD until 1/27/20.

And while the Postgres vulnerability is the most egregious
example, there were many additional causes for concern.
In the overall dataset of 2,694 CVEs:

• 119 CVEs (4.4%) had lags of a year or more
• 660 CVEs (24%) had lags of 30 days or more
• 1,286 CVEs (48%) had lags of 3 days or more

Unfortunately the picture remains bleak even as we
narrow our focus to the weaponized vulnerabilities. The
only good news is that weaponized vulnerabilities had a
lower percentage of CVEs with a lag of a year or more. For
the 89 weaponized CVEs we found:

• The average lag time was 46 days
• 2 CVEs (2.2%) had lags of a year or more
• 26 CVEs (27%) had lags of 30 days or more
• 66 CVEs (74%) had lags of 3 days or more

54
D AY S

https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2015-0244

RiskSense Spotlight Report • May 2020

Page 11 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

4. NVD Latency Analysis (Continued)

Likewise, the lag metrics did not seem to improve based on CVSS score or severity. We analyzed the dataset based on
CVSS v2, CVSS v3, and RiskSense’s own Vulnerability Risk Rating as seen in Figure 4(a). Across all scoring systems, the
highest severities also had the longest lag times. Note that not all CVEs were assigned CVSS v3 scores, which is why the
totals differ from CVSS v2 and RiskSense.

0

10

20

30

40

50

60

70

80

Critical

v3 VRR

High

v2 v3 VRR

Medium

v2 v3 VRR

Low

v2 v3 VRR

Figure 4(a): NVD Lag by CVE Severity

Av
er

ag
e

La
g

Ti
m

e
(D

ay
s)

Page 12 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

4. NVD Latency Analysis (Continued)

NVD Lag Times by Open Source Project
While lag metrics were high overall, there was also a wide
variance between the individual OSS projects. Figure 4(b)
shows the average NVD lag times of all projects in the
study ranked from highest average lag to lowest.

PostgreSQL had the longest average lag of 246 days
across 47 CVEs. The Postgres numbers were heavily
skewed by 6 CVEs with lag times longer than 1,000 days.
Those CVEs include CVE-2015-0241, CVE-2015-0242,
CVE-2015-0243, CVE-2015-0244, CVE-2015-3167, and
CVE-2015-3166. Notably, CVE-2015-0244 and
CVE-2015-3166 had CVSS v3 severities of Critical, while
the others were classified as High. Some Postgres
vulnerabilities had low lags, and some even were
published on the same day the CVE was released.
However, lags were a consistent issue with 23 out of the
47 total CVEs having a lag of 10 days or more.

Unfortunately, many of the projects with the most CVEs
and most weaponized CVEs also had long lag times. For
example Jenkins, which had the most total CVEs (646)
and tied for the most weaponized (15), and an average
lag time of 33 days. However, others fared considerably
worse. JBoss averaged 154 days of lag across 88 CVEs
and 8 weaponized CVEs. Likewise OpenStack averaged
130 days across 165 CVEs and 7 weaponized.

On the other hand, some projects fared much better.
Vagrant, which had 6 of its 9 CVEs weaponized, had a lag
time of 2 days. Cloud Foundry fared the best with less
than a day of lag across 42 vulnerabilities.

Product Average NVD Lag (Days)

PostgreSQL
MongoDB

JBoss
Ansible
OpenStack
Puppet
OpenShift
Tomcat
Elasticsearch
Kaltura
GitLab
Kibana
Kubernetes
Hive
Selenium
Redis
Mapbox
Gradle
Jenkins
Hadoop
Docker
Chef
Open vSwitch
Hbase
MySQL
Git
Spark

Logstash

SVN
Magento
Nginx

Cassandra
Vagrant
Vault
Artifactory
Consul
LifeRay Portal
Snort
Odoo
Kafka
Cloud Foundry
Alfresco
Appium
Coffescript
Heroku
Intellij
Maven
Nomad
Pentaho
Sentinel
Tensorflow

Canvas

246
240

154
151
130
126
120
114
98
77
76
70
66
58
57
52
48
38
33
30
27
27
26
20
19
15
12

173

12
10
10

3
2
2
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

7

NPM

4

Figure 4(b): Average NVD Lag

Page 13 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

4. NVD Latency Analysis (Continued)

Lag Examples
The overarching problem with NVD lag times is that it can make organizations blind to significant risks, especially if they
rely solely on the NVD as the source of truth for CVE data. The following examples from our OSS dataset highlight this
impact to an organization.

CVSS v2 CVSS v3 RiskSense VRR OSS Project

8.8 9.846.5 Jenkins

CVE-2019-1003000:
1/8/19

NVD
7/23/18 1/22/19

NVD Lag: 15 days
Time to Weaponize (TTW): -169 days
Time to Develop Patch (TTP): 0 days

a sandbox bypass vulnerability that allows attackers to
execute arbitrary code in the Jenkins JVM.

Weaponized Patch Release DateCVE Release Date NVD Release DateNVD

CVSS v2 CVSS v3 RiskSense VRR OSS Project

8.1 109.3 Ansible
OpenStack

CVE-2016-9587:

1/25/17

NVD
1/9/17 4/24/18

NVD Lag: 471 days
Time to Weaponize (TTW): 0 days
Time to Develop Patch (TTP): 17 days

an input validation vulnerability that can enable remote code
execution by an attacker. The vulnerability is assigned to
Ansible but also affects OpenStack.

CVSS v2 CVSS v3 RiskSense VRR OSS Project

9.8 107.5 Jenkins

CVE-2016-9299:
11/11/16

NVD
11/16/16 1/12/17

NVD Lag: 63 days
Time to Weaponize (TTW): 5 days
Time to Develop Patch (TTP): 19 days

an LDAP Injection vulnerability that can enable
remote code execution.

11/30/16

https://nvd.nist.gov/vuln/detail/CVE-2019-1003000
https://nvd.nist.gov/vuln/detail/CVE-2016-9587
https://nvd.nist.gov/vuln/detail/CVE-2016-9299

Page 14 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

4. NVD Latency Analysis (Continued)

CVSS v2 CVSS v3 RiskSense VRR OSS Project

7.1 8.686.8

CVE-2016-6816:
11/8/16

NVD
11/22/16 3/20/17

NVD Lag: 133 days
Time to Weaponize (TTW): 14 days
Time to Develop Patch (TTP): -6 days

an input validation vulnerability that can enable
remote code execution.

11/2/16

CVSS v2 CVSS v3 RiskSense VRR OSS Project

8.8 9.979 Jenkins
OpenShift

CVE-2016-0792:
2/24/16

NVD
4/6/16 4/7/16

NVD Lag: 44 days
Time to Weaponize (TTW): 43 days
Time to Develop Patch (TTP): 23 days

is a deserialization vulnerability that can enable
remote code execution.

3/17/16

Weaponized Patch Release DateCVE Release Date NVD Release DateNVD

Apache Tomcat

https://nvd.nist.gov/vuln/detail/CVE-2016-0792
https://nvd.nist.gov/vuln/detail/CVE-2016-6816

Page 15 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

5. Vulnerabilities by Weakness

CWE ID CWE Name Total CVEs Weaponized

200

79

20

284

352

264

22

119

254

732

287

918

502

310

276

89

94

78

77

362

59

74

434

190

835

798

426

427

388

704

90

216

Information Exposure

Cross-Site Scripting

Improper Input Validation

Improper Access Control

Cross-Site Request Forgery (CSRF)

Improper Access Controls

Path Traversal

Improper Restriction within a Memory Buffer

Security Features

Incorrect Permission Assignment for Critical Resource

Improper Authentication

Server-Side Request Forgery (SSRF)

Deserialization of Untrusted Data

Cryptographic Issues

Incorrect Default Permissions

SQL Injection

Code Injection

OS Command Injection

Command Injection

Race Condition

Link Following

Injection

Unrestricted Upload of File with Dangerous Type

Integer Overflow or Wraparound

Infinite Loop

Use of Hard-coded Credentials

Untrusted Search Path

Uncontrolled Search Path Element

Error Handling

Incorrect Type Conversion or Cast

LDAP Injection

Containment Errors (Container Errors)

289

236

184

126

104

69

61

53

47

44

37

36

33

30

27

22

17

16

16

15

15

14

11

11

9

6

5

2

2

2

1

1

4

11

9

2

4

7

2

4

6

1

1

1

5

1

1

3

1

2

1

4

2

1

3

1

1

1

1

2

1

1

1

1

Figure 5(a): Most Common CWEs

To better understand the vulnerabilities in the dataset, we
analyzed them in terms of their underlying weaknesses
using the Common Weakness Enumeration (CWE)
classification. We then further highlighted the
vulnerabilities that map to an OWASP Top 10 category. It
should be noted that not all CVEs had corresponding CWE
data, so the following analysis is limited to 2,209 CVEs.

Even with the reduction, the OSS dataset showed
remarkable diversity, with a total of 106 CWE
classifications represented. However only 32 of those
CWE categories were weaponized. Figure 5(a) provides

a ranked list of the most common CWEs that had at least
one weaponized vulnerability.

From this list we can see that CWE-200 Information
Exposure, CWE-79 Cross-Site Scripting (XSS), and CWE-20
Improper Input Validation were the most common
weaknesses overall. It is no surprise to see high amounts
of XSS, as they have consistently been some of the more
common types of weaknesses and also some of the most
handsomely rewarded by bug bounty programs. Likewise,
CWE-20 Improper Input Validation is a common category
as it covers a wide variety of potential attack patterns.

https://cwe.mitre.org/
https://owasp.org/www-project-top-ten/

Page 16 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

5. Vulnerabilities by Weakness (Continued)

Next, we further honed in the weaknesses that were specifically trending in the wild, shown in Figure 5(c). These
vulnerabilities pose the most immediate risk to organizations due to their use in widespread attack campaigns. Most
notably three of these weaknesses were not featured prominently in either of our previous lists above. Code Injection only
had 17 CVEs total, with only 1 weaponized. Error Handling only mapped to 2 CVEs, one of which was both weaponized
and trending, and the lone Container Error weakness in the dataset was likewise both weaponized and trending.

CWE ID CWE Name CVE Project

20

264

502

388

216

94

Improper Input Validation

Improper Access Control

Deserialization of Untrusted Data

Error Handling

Containment Errors (Container Errors)

Code Injection

CVE-2020-1938

CVE-2010-0738

CVE-2017-12149

CVE-2018-1002105

CVE-2019-5736

CVE-2019-7932

Apache Tomcat

JBoss

JBoss

Kubernetes, OpenShift

Docker, OpenShift, Kubernetes

Magento

However, we can start to see some interesting findings as we focus on the weaknesses that were both weaponized and
trending in the wild. Figure 5(b) shows the top 10 CWEs in terms of weaponization. Most noticeably, Cross-Site Scripting
takes over the top spot followed by Input Validation.

Other CWEs made noticeable jumps when ranked in terms of weaponization. For example, Deserialization was only the
13th most common CVE overall yet was 5th in terms of weaponization. Likewise Race Condition weaknesses were tied for
the 6th most common weaponized weakness despite only having 15 total CVEs.

0 2 4 6 8 10 12

Cross-Site Scripting

Improper Input Validation

Improper Access Control

Security Features

Deserialization of Untrusted Data

Information Exposure

Cross-Site Request Forgery

Improper Restriction
within a Memory Buffer

Race Condition

SQL Injection

Figure 5(b): Top 10 Weaponized CWEs

Figure 5(c): Weaknesses Trending in the Wild

Count of Weaponized CVEs

Page 17 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

5. Vulnerabilities by Weakness (Continued)

OWASP Top 10 Category Total CVEs Weaponized Trending

Figure 5(e): OWASP Top 10

A1: 2017-Injection

A2: 2017-Broken Authentication

A3: 2017-Sensitive Data Exposure

A4: 2017-XML External Entities (XXE)

A5: 2017-Broken Access Control

A6: 2017-Security Misconfiguration

A7: 2017-Cross-Site Scripting (XSS)

A8: 2017-Insecure Deserialization

Total

76

108

143

25

196

2

239

33

822

7

1

1

0

4

0

11

5

29

1

0

0

0

0

0

0

1

2

Weaknesses by OWASP Top 10
Next we mapped CWE codes to their respective categories within the OWASP Top 10. In total 822 CVEs mapped to
OWASP categories, of which 29 were weaponized and 2 were trending. A7: Cross-Site Scripting remained the most
common weakness overall, followed by A5: Broken Access Control and A3: Sensitive Data Exposure.

Figure 5(d): CVEs by OWASP Top 10 Categories

A7 A5 A3 A1 A8 A4A2 A6

Page 18 Spotlight • The Dark Reality of Open Source – Through the Lens of Threat and Vulnerability Management

RiskSense Spotlight Report • May 2020

Conclusion

Open source software is an increasingly major part of an
organization’s attack surface. And while open source has
many benefits, managing this new attack surface can be
a particular challenge. As with more traditional software,
open source projects are generating new vulnerabilities
at a historically rapid pace, and traditional scoring
systems (e.g., CVSS) on their own don’t always do a good
job in prioritizing which vulnerabilities carry the greatest
real-world risk. Additionally many open source projects
lag significantly behind more traditional software in
terms of how CVEs are reported via standard resources
like the National Vulnerability Database.

Unfortunately, these challenges including the number of
overall vulnerabilities, weaponization rates, and NVD
reporting lag times tend to vary considerably from project
to project. This makes it all the more important to
incorporate real-world vulnerability context into a risk-based
approach to vulnerability management for open source
software. We hope that the data in this report provides
useful insights that organizations can put to use in their
development, IT, and security practices. To learn more
about the data in this report or about RiskSense products
and services, please contact us at info@risksense.com.

RiskSense Spotlight Report • May 2020

© 2020 RiskSense, Inc. All rights reserved. RiskSense and the RiskSense logo are registered trademarks of RiskSense, Inc. Spotlight_OpenSource_20200608

Contact us today to learn more about RiskSense
RiskSense, Inc. | +1 844.234.RISK | +1 505.217.9422 | risksense.com

SCHEDULE A DEMOCONTACT US READ OUR BLOG

RiskSense – the industry's only full spectrum risk-based vulnerability management and prioritization platform.

RiskSense®, Inc. provides vulnerability management and prioritization to measure and control cybersecurity risk. The
cloud-based RiskSense platform uses a foundation of risk-based scoring, analytics, and technology-accelerated pen testing
to identify critical security weaknesses with corresponding remediation action plans, dramatically improving security and IT
team efficiency and effectiveness. For more information, visit www.risksense.com or follow us on Twitter at @RiskSense.

About RiskSense

https://risksense.com/company/contact-us/
https://risksense.com/demonow/
https://risksense.com/blog/
https://risksense.com/
https://risksense.com/
https://twitter.com/RiskSense

